Introduction to deep learning
Charniak, Eugene
Introduction to deep learning - Massachusetts: The MIT Press; c2018. - xii, 174p.
Includes index.
A project-based guide to the basics of deep learning.
This concise, project-driven guide to deep learning takes readers through a series of program-writing tasks that introduce them to the use of deep learning in such areas of artificial intelligence as computer vision, natural-language processing, and reinforcement learning. The author, a longtime artificial intelligence researcher specializing in natural-language processing, covers feed-forward neural nets, convolutional neural nets, word embeddings, recurrent neural nets, sequence-to-sequence learning, deep reinforcement learning, unsupervised models, and other fundamental concepts and techniques.
9780262039512
Computational learning theory
006.31 CHA
Introduction to deep learning - Massachusetts: The MIT Press; c2018. - xii, 174p.
Includes index.
A project-based guide to the basics of deep learning.
This concise, project-driven guide to deep learning takes readers through a series of program-writing tasks that introduce them to the use of deep learning in such areas of artificial intelligence as computer vision, natural-language processing, and reinforcement learning. The author, a longtime artificial intelligence researcher specializing in natural-language processing, covers feed-forward neural nets, convolutional neural nets, word embeddings, recurrent neural nets, sequence-to-sequence learning, deep reinforcement learning, unsupervised models, and other fundamental concepts and techniques.
9780262039512
Computational learning theory
006.31 CHA